A Review of the Importance of Demulsifiers in Oil Refining and Effective Methods of Their Application

Abstract

A characteristic feature of the current stage in the development of Kazakhstan’s oil and gas industry is the transition of many major oil fields under development to the stage of declining production. The specific nature of developing heavy oil fields leads to a number of common challenges faced by oil companies. These include complications in the operation of oilfield equipment, reduced maintenance intervals for both surface and downhole equipment, increased equipment failure due to rising loads, low profitability of well operation, problems with the utilization and rational use of associated petroleum gas, and, as a result, extremely low profitability of field development and operation. To date, numerous studies have been conducted to investigate the mechanisms of emulsification and demulsification. Stable emulsions have both technical and economic implications for the industry, particularly in terms of treatment facilities, processing, and transportation. Effective treatment is essential to ensure optimal hydrocarbon production. This article reviews the published work on oil emulsion formation, demulsification treatment, characteristics of suitable demulsifiers for this purpose, and the mechanisms of oil emulsion formation. Crude oil contains natural surfactants with a strong tendency to form stable emulsions. Stable emulsions must be properly treated to meet industrial standards. Therefore, fundamental studies of natural surfactants that contribute to emulsion stability are analyzed to enable effective separation of emulsions into oil and water. This includes the evaluation of various published mechanisms of emulsification and the appropriate formulation for effective demulsification.

References

  1. Markin A.N., Nizamov R.E., Sukhoverkhov S.V. Neftempromyslovaya khimiya: prakticheskoe rukovodstvo. Vladivostok: Dalnauka, 2011. 288 s. https://www.geokniga.org/books/12829
  2. Kazymov Sh.P. Tekhnologiya razrusheniya emulsiy v prizaboynoy zone skvazhin. Neftepromyshlovoe delo. 2011. № 4. S. 44–46. https://www.researchgate.net/publication/297715344
  3. Fattakhov R.B., Sakhabutdinov R.Z., Pergushev L.P. Sravnitel'nye promyslovye issledovaniya tsentrobezhnogo i multifaznogo nasosov. Neftepromyshlovoe delo. 2011. № 3. S. 22–24. https://www.dissercat.com/content/kompozitsionnye-sostavy-dlya-protsessov-podgotovki-ustoichivykh-promyslovykh-emulsii
  4. Zeigman Yu.V., Kolonskikh A.V. Optimizatsiya raboty UÉTsN dlya predotvrashcheniya obrazovaniy oslozhneniy. Neftégazovoe delo. 2005. S. 1–9. https://ogbus.ru/files/ogbus/authors/Zeigman/Zeigman_1.pdf
  5. Gabdullin R.F. Ekspluatatsiya skvazhin, oborudovannykh UÉTsN v oslozhnennykh usloviyakh. Neftyanoe khozyaystvo. 2002. № 4. S. 62–64. https://www.oil-industry.net/Journal/archive_detail.php?ID=433&art=2014
  6. Ivanov V.N., Levin Yu.V. Osnovnye zadachi razvitiya i sovershenstvovaniya ustanovok elektropривodnykh tsentrobezhnykh nasosov. UKANG. 2004. № 1. S. 33–36.
  7. Shevlyakov M.V. Fiziko-khimicheskie osnovy protsessa formirovaniya i stabilizatsii vodoneftyanykh emulsiy vysokoparafinistykh neftey. Novyi universitet. 2011. № 3. S. 30–35.
  8. Pivovarova N.A., Kirillova L.B., Takaeva M.A. i dr. O svoystvakh i stroenii neftyanykh dispersnykh sistem. Vestnik AGNTU. 2008. № 6. S. 138–143.
  9. Ur'ev N.B. Fiziko-khimicheskaya dinamika dispersnykh sistem. Uspekhi khimii. 2004. T. 73. № 1. S. 39–62. https://www.uspkhim.ru/php/paper_rus.phtml?journal_id=rc&paper_id=861
  10. Ermakov S.A., Mordvinov A.A. O vliyanii asfaltenov na ustoichivost' vodoneftyanykh emulsiy. Neftégazovoe delo. 2007. № 1. S. 1–9. https://ogbus.ru/files/ogbus/authors/Ermakov/Ermakov_1.pdf
  11. Nebogina N.A. Vliyanie sostava nefti i stepeni ee obvodnennosti na strukturno-mekhanicheskie svoystva emulsiy: avtoreferat dis. … kand. khim. nauk: 02.00.13. Tomsk, 2009. 22 s. https://www.dissercat.com/content/vliyanie-sostava-nefti-i-stepeni-ee-obvodnennosti-na-strukturno-mekhanicheskie-svoistva-emul
  12. Nebogina N.A., Prozorova I.V., Yudina N.V. Protsess stabilizatsii i osadkoobrazovaniya vodno-neftyanykh sistem. Neftégazovoe delo. 2007. № 12. S. 1–7.
  13. Krikunov V.V., Bobrov E.V., Shilov V.I. i dr. Reologicheskie svoystva vodoneftyanykh emulsiy, obrazovannykh vysokomineralizovannymi plastovymi rassolami. Vestnik Tyumenskogo gos. un-ta. 2007. № 3. S. 10–20. https://cyberleninka.ru/article/n/reologicheskie-svoystva-vodoneftyanoy-emulsii-archinskogo-mestorozhdeniya
  14. Kirbizhekova E.V., Prozorova I.V., Yudina N.V., Margolis N.Yu. Zavisimost' reologicheskikh svoystv vodoneftyanykh emulsiy ot soderzhaniya i mineralizatsii vodnoy fazy. Neftyanoe khozyaystvo. 2013. № 10. S. 112–115.
  15. Moradi M. Effect of salinity on water-in-crude emulsion: evaluation through drop-size distribution proxy. Energy and Fuels. 2011. № 24 (1). Р. 260–268. doi: 10.1021/ef101236h
  16. Khisamov R.S., Fayzullin N.N., Sharafutdinov V.F. i dr. Dinamika dispersnogo stroeniya neftey na pozdney stadii razrabotki Romashkinskogo mestorozhdeniya. Neftyanoe khozyaystvo. 2004. № 7. S. 55–57.
  17. Petrova L.M., Romanov G.V., Foss T.R., Abbakumova N.A. Izmenenie sostava nefti v protsesse dobychi. Neftyanoe khozyaystvo. 2004. № 7. S. 62–64.
  18. Akhmadieva A.Sh., Mingazov R.R., Rakhmatullin R.R. i dr. Otsenka strukturno-mekhanicheskoy prochnosti mezhfaznykh sloev neft'-voda. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013. T. 16. № 11. S. 242–244.
  19. Sakhabutdinov R.Z., Kosmacheva T.F., Gubaydullin F.R., Tat'yanina O.S. Prichiny povysheniya ustoichivosti vodoneftyanykh emulsiy. Neftyanoe khozyaystvo. 2007. № 1. S. 74–77.
  20. Khamidullin R.F., Mingazov R.Kh., Khamidi M.R. i dr. Otsenka kolichestvennogo soderzhaniya dispersnykh chastits – kak stabilizatorov neftyanoi emul'sii (suspensii). Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013. T. 16. № 11. S. 281–286.
  21. Sharifullin A.V., Baybekova L.R., Khamidullin R.F., Farrakhova L.F. Osobennosti strukturno-gruppovogo sostava asfalto-smolo-parafinovykh otlozheniy. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2006. № 1. S. 190–198.
  22. Smith D.F. Petroleomics. Applications of Fourier Transform Ion Cyclotron Resonance Mass SpectrometryCrude Oil and Bitumen Analysis:Thesis. Tallahassee: Florida State University, 2007. - 198 p.
  23. Smith D.F., Schaub T.M., Rahimi P.. Self-Association of Organic Acids in Petroleum and Canadian Bitumen Characterized by Low- and High-Resolution Mass Spectrometry. Energy and Fuels. - 2007. - № 21 (3). - Р. 1309-1316. doi: 10.1021/ef060387c
  24. Auflem I.H. Influence of Asphaltene Aggregation and Pressure on Crude Oil Emulsion Stability: Dr. Ing. Thesis. -Trondheim: Norwegian University of Science and Technology, 2002. - 58 p.
  25. Auflem I.H., Havre T.E, Sjöblom J. Near-IR study on thedispersive effects of amphiphiles and naphthenic acids on asphaltenes in model heptane-toluene mixtures. Colloid and Polymer Science. - 2002.- № 280 (8). - Р. 695-700.
  26. Havre T.E. Formation of Calcium Naphthenate in Water/OilSystems, Naphthenic Acid Chemistry and Emulsion Stability: Dr. Ing. Thesis. - Trondheim:Norwegian University of Science and Technology, 2002. - 71 p.
  27. Varadaraj R., Brons C. Molecular Origins of Heavy Oil Interfacial Activity Part 1: Fundamental Interfacial Properties of Asphaltenes Derived from Heavy Crude Oils and Their Correlation to Chemical Composition. Energy and Fuels. - 2007. - № 21. - Р. 195-198. doi: 10.1021/ef0604240
  28. Kutyrev E.F., Ramazanov R.U., Karimov A.A. O roli gaza pri formirovanii emulsiy v protsessakh neftedobychi. Neftepromyslovoe delo. 2008. № 6. S. 52–55.
  29. Tronov V.P. Vzaimovliyanie smezhnykh tekhnologiy pri razrabotke neftyanykh mestorozhdeniy. Kazan': Izd-vo "Fen", 2006. 736 s.
  30. Evdokimov I.N., Eliseev N.Yu., Iktisanov V.A. Osobennosti formirovaniya promezhutochnykh sloev v vodoneftyanykh emulsiyakh. KHTTM. 2005. № 4. S. 37–39.
  31. Shireev A.I., Tronov V.P., Ismagilov I.Kh., Sakhabutdinov R.Z. Osnovnye prichiny povysheniya ustoichivosti neftyanykh emulsiy v protsesse dobychi, sbora i vnutripromyshlovogo transporta. Sb. nauchn. trudov TatNIPIneft'. Bugul'ma, 2000. S. 234–238.
  32. Gubaydullin F.R., Kosmacheva T.F., Tronov V.P., Sakhabutdinov R.Z. Metody stabilizatsii raboty ustanovok podgotovki nefti. Neftyanoe khozyaystvo. 2003. № 3. S. 66–68.
  33. Kosmacheva T.F., Gubaydullin F.R., Ismagilov I.Kh., Sakhabutdinov R.Z. Issledovanie vozmozhnosti deemul'gatorov obrazovyvat' anomally ustoichivye struktury. Neftyanoe khozyaystvo. 2004. № 1. S. 90–92.
  34. Zhivaev A.A., Nizamov R.E. Issledovanie sostava i svoystv promezhutochnykh emulsionnykh sloev iz rezervuarov podgotovki nefti. Mir Novykh Tekhnologiy. 2007. № 2. S. 43–46.
  35. Borisov S.I., Kateev M.V., Kalinina E.S. i dr. Mekhanizm deystviya PAV kak deemul'gatorov neftyanykh emulsiy. Neftyanoe khozyaystvo. 2004. № 4. S. 74–76.
  36. Khamidullina F.F., Khamidullin R.F., Mingazov R.Kh., Kiyamov I.K. Poisk effektivnogo deemul'gatora dlya tekhnologii podgotovki produktsii neftyanykh skvazhin na pozdney stadii ekspluatatsii mestorozhdeniy. Vestnik KGTU. 2014. T. 17. № 17. S. 266–271.
  37. Khamidullina F.F., Khamidullin R.F., Mingazov R.Kh., Kiyamov I.K. Razrabotka kompozitsionnogo dkeemul'gatora dlya protsessov podgotovki produktsii neftyanykh skvazhin na pozdney stadii ekspluatatsii mestorozhdeniy. Vestnik KGTU. 2014. T. 17. № 7. S. 258–262.
  38. Khamidullin R.F. Fiziko-khimicheskie osnovy i tekhnologiya podgotovki vysokovyazkikh neftey: dis. … dokt. tekhn. nauk: 02.00.13. Kazan', 2002. 363 s.
  39. Sergienko N.D. Issledovanie, razrabotka i vnedrenie protsessa podgotovki k pererabotke stoikikh vysokovodnennykh vodoneftyanykh emulsiy s povyshennym soderzhaniem mekhanicheskikh primesey: avtoref. dis. … kand. tekhn. nauk: 05.17.07. M., 2005. 26 s.
  40. Khutoryanskiy F.M., Potapochkina I.I. i dr. Novyi nefterastvorimyi deemul'gator otechestvennogo proizvodstva. Mir nefteproduktov. 2003. № 3. S. 11–14.
  41. Pat. 2117689 RF. Sostav dlya obezvozhivaniya i obessolivaniya nefti / A.I. Orekhov i dr. Zayavl. 06.01.1997; opubl. 20.08.1998.
  42. Pat. 2454449 RF. Sostav dlya obezvozhivaniya i obessolivaniya vodoneftyanykh emulsiy, obladaiushchiy zashchitnym effektom ot korrozii / R.R. Mingazov i dr. Zayavl. 12.05.2011; opubl. 27.06.2012.
  43. Pat. 2174533 RF. Sostav dlya razrusheniya vodoneftyanykh emulsiy i zashchity neftepromyslovogo oborudovaniya ot korrozii / A.R. Panteleeva i dr. Zayavl. 04.07.2000; opubl. 10.10.2001.
  44. Pat. 2147599 RF. Sostav dlya obezvozhivaniya nefti, obladaiushchiy svoystvami ingibitora serovodorodnoy i mikrobiologicheskoy korrozii / G.A. Tudriy i dr. Zayavl. 11.03.1998; opubl. 20.04.2000.
  45. Pat. 2126029 RF. Sostav dlya obezvozhivaniya i obessolivaniya nefti i zashchity neftepromyslovogo oborudovaniya ot korrozii / G.A. Tudriy i dr. Zayavl. 11.03.1998; opubl. 10.02.1999.
  46. Feitosa F.X., Alves R.S. Synthesis and application of additives based on cardanol as demulsifier for water-in-oil emulsions. Fuel, 2019, Р. 21–28. https://doi.org/10.1016/j.fuel.2019.02.081
  47. Sjöblom J. Encyclopedic handbook of emulsion technology. CRC Press, Hoboken, 2001, Р.760 https://doi.org/10.1201/9780367801281
  48. Delgado-Linares J.G., Pereira J.C., Rondon M., Bullon J., Salager J.L. Breaking of water-in-crude oil emulsions. Estimating the demulsifier performance at optimum formulation from both the required dose and the attained instability. Energy Fuels, 2016, 5483–5491 doi: 10.1021/acs.energyfuels.6b00666
  49. Grenoble Z., Trabelsi S. Mechanisms, performance optimization and new developments in demulsification processes for oil and gas applications. Adv Coll Interface Sci , 2018, 260:32–45. https://doi.org/10.1016/j.cis.2018.08.003
  50. Salager J.L., Forgiarini A.M. Emulsion stabilization, breaking, and inversion depends upon formulation: advantage or inconvenience in flow assurance. Energy Fuels, 2012, 26(7):4027–4033. https://doi.org/10.1021/ef3001604
  51. Pasban A.A., Sadeghpour S., Masoumi M., Akbar A., Beigi M. Acidity removal of Iranian heavy crude oils by nanofluid demulsifier:an experimental investigation. J. Nano Anal., 2017, 4(1):112–118
  52. Salager J.L. Surfactants types and uses. FIRP Booklet(E300A), 2002, Р. 2
  53. Umar A. A. and et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering. 2018, Vol. 165, P. 673-690. https://doi.org/10.1016/j.petrol.2018.03.014
  54. Schramm L.L., Stasiuk E.N., Marangoni D.G. Surfactants and their applications. Ann Rep. Prog. Chem. Sect .C. 2003, 99:3–48. https://doi.org/10.1039/B208499F
  55. Matijasevic B., Banhart J. Improvement of aluminium foam technology by tailoring of blowing agent. Scripta Mater., 2006, 54(4):503–508. https://doi.org/10.1016/j.scriptamat.2005.10.045
  56. Peralta-Martínez M.V., Arriola-Medellín A., and et al. Influence of the speed mixing-on viscosity and droplet size of oil in water emulsions. Pet. Sci. Technol., 2004, 22(7–8):1035–1043. https://doi.org/10.1081/LFT-120038709
  57. Zolfaghari R., Fakhru’l-Razi A., Abdullah L.C. and et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol., 2016, 170:377–407. https://doi.org/10.1016/j.seppur.2016.06.026
  58. Liu M., Cao X., and et al. The effect of demulsifier on the stability of liquid droplets: A study of micro-force balance. Journal of Molecular Liquids. Vol. 275, 2019, P. 157-162.
  59. Sun H., Wang Q., Li X., He X. Novel polyether-polyquaternium copolymer as an effective reverse demulsifier for O/W emulsions: Demulsification performance and mechanism. Fuel. Vol. 263, 2020, 116770 http://dx.doi.org/10.1016/j.fuel.2019.116770
  60. Abdulredha M.M., Hussain S.A., Abdullah L.C. Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods. Journal of Petroleum Science and Engineering. Vol. 184, 2020, 106463 http://dx.doi.org/10.1016/j.petrol.2019.106463
  61. Hazrati N., Beigi A., Abdouss M. Demulsification of water in crude oil emulsion using long chain imidazolium ionic liquids and optimization of parameters. Fuel. Vol. 229 2018, P. 126-134 http://dx.doi.org/10.1016/j.fuel.2018.05.010
  62. Zhang X., He C., Zhou J., Tian Y., He L., Sui H., Li X. Demulsification of water-in-heavy oil emulsions by oxygen-enriched non-ionic demulsifier: Synthesis, characterization and mechanisms. Fuel. Vol. 338, 2023, 127274 http://dx.doi.org/10.1016/j.fuel.2022.127274
  63. Wang D., Yang D., Huang C., Huang Y., Yang D., Zhang H., Liu Q., Tang T., El-Din M.G., Kemppi T., Perdicakis B., Zeng H. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review. Fuel. Vol. 286, 2021, 119390 http://dx.doi.org/10.1016/j.fuel.2020.119390
  64. Belhaj A.F., Elraies K.A., Alnarabiji M.S., Abdul Kareem F.A., Shuhli J.A., Mahmood S.M., Belhaj H. Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application. Chemical Engineering Journal. Vol. 406, 2021, 127081 http://dx.doi.org/10.1016/j.cej.2020.127081
  65. Ma J., Li X., Zhang X., Sui H., He L., Wang S. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions. Chemical Engineering Journal. Vol. 385, 2020, 123826
  66. Fuentes J.V., Zamora E.B., Li Z., Xu Z., Chakraborty A., Zavala G., Vazquez F., Flores C. Alkylacrylic-carboxyalkylacrylic random bipolymers as demulsifiers for heavy crude oils. Separation and Purification Technology. Vol. 256, 2021, 117850 http://dx.doi.org/10.1016/j.seppur.2020.117850
  67. Xu H., Li Z., Wang C., Wang Z., Yu R., Tan Y. Synthesis and application of amphiphilic copolymer as demulsifier for super heavy oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 669, 2023, 131498 http://dx.doi.org/10.1016/j.colsurfa.2023.131498
  68. Ezzat A.O., Atta A.M., Al-Lohedan H.A., Hashem A.I. Synthesis and application of new surface active poly (ionic liquids) based on 1,3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. Journal of Molecular Liquids. Vol. 251, 2018, P. 201-211 http://dx.doi.org/10.1021/acs.energyfuels.7b02955
  69. Abdulraheim A.M. Green polymeric surface active agents for crude oil demulsification. Journal of Molecular Liquids. Vol. 271, 2018, P. 329-341 http://dx.doi.org/10.1016/j.molliq.2018.08.153
  70. Wang Z., Li N., Sun Z., Wang X., Chen Q., Liu W., Qi Z., Wei L., Li B. Molecular dynamics study of droplet electrocoalescence in the oil phase and the gas phase. Separation and Purification Technology. Vol. 278, 2021, 119622 https://doi.org/10.1016/j.seppur.2021.119622
  71. Dong H., Liu Y., Zhou Y., Liu T., Li M., Yang Z. Mechanism investigation of coalescence behaviors of conducting droplets by molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 570, 2019, P. 55-62.
  72. Ortiz D.P., Baydak E.N, Yarranton H.W. Effect of surfactants on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes. Journal of Colloid and Interface Science. Vol. 351, Issue 2, 2010, P. 542-555 http://dx.doi.org/10.1016/j.jcis.2010.08.032
  73. Cendejas G., Arreguin F., Castro L.V., Flores E.A., Vazquez F. Demulsifying super-heavy crude oil with bifunctionalized block copolymers. Fuel. Vol. 103, 2013, P. 356-363 http://dx.doi.org/10.1016/j.fuel.2012.08.029
  74. Yan L., Xia X., Ma J., Zhao T., Chen Z., Cong H., Li X. Esterified polyether demulsifier efficiently breaking water-in-heavy oil emulsions at low temperature. Separation and Purification Technology. Vol. 374, 2025, 133678 http://dx.doi.org/10.1016/j.seppur.2025.133678
  75. Seidy-Esfahlan M., Tabatabaei-Nezhad S.A., Khodapanah E. Comprehensive review of enhanced oil recovery strategies for heavy oil and bitumen reservoirs in various countries: Global perspectives, challenges, and solutions. Heliyon. Vol. 10, Issue 18, 2024, e37826 https://doi.org/10.1016/j.heliyon.2024.e37826
  76. Li J., Duan M., Nie М., Liang Q., Fang Sh. Synthesis of Multibranched Polyacrylate Demulsifiers via RAFT Polymerization and Investigation of Their Demulsification Performance Under Coupled Electric Field Conditions. Journal of Applied Polymer Science. 2025. e57445 http://dx.doi.org/10.1002/app.57445
  77. Wang X., Zhang Z., Zhang Y., Zhang G., Wang F. Study on association behavior and solution properties of poly(acrylic acid-alkyl polyoxyethylene acrylate) amphiphilic copolymers. Iranian Polymer Journal. Vol. 33, 2024. P. 943-953 http://dx.doi.org/10.21203/rs.3.rs-2649576/v1
  78. Politova N., Tcholakova S., Denkov N.D. Factors affecting the stability of water-oil-water emulsion films. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 522, 2017, P. 608-620 http://dx.doi.org/10.1016/j.colsurfa.2017.03.055
  79. Grenoble Z., Trabelsi S. Mechanisms, performance optimization and new developments in demulsification processes for oil and gas applications. Advances in Colloid and Interface Science. Vol. 260, 2018, P. 32-45 https://doi.org/10.1016/j.cis.2018.08.003
  80. Dong X., Liu H., Chen Z. Chapter 2 – Existing problems for steam-based enhanced oil recovery processes in heavy oil reservoirs. Developments in Petroleum Science. Vol. 73, 2021, P. 47-98 http://dx.doi.org/10.1016/B978-0-12-823954-4.00005-9
  81. Jose G. Delgado-Linares, and et al. Detection and Assessment of Asphaltene Precipitation/Deposition at Reservoir Conditions and Gas Hydrate Formation in the Presence of Thermodynamic Hydrate Inhibitors http://dx.doi.org/10.4043/32494-MS
  82. Lang Ch., Han B., and et al. Characterization of Hydrate Formation and Flow Influenced by Hydrophilic–Hydrophobic Components within a Fully Visual Rocking Cell. Energy & Fuels 2024, 38 (5) , 3670-3681. https://doi.org/10.1021/acs.energyfuels.3c04492
  83. Xu R., and et al. Review and Perspectives of Anionic Dispersants for Coal–Water Slurry. Energy & Fuels 2023, 37 (7) , 4816-4834. https://doi.org/10.1021/acs.energyfuels.2c03938
  84. Binks B.P., Tyowua A.T. Particle-Stabilized Powdered Water-in-Oil Emulsions. Langmuir, 2016, 32(13):3110-3115 https://doi.org/10.1021/acs.langmuir.6b00140
  85. Alvarado J.G., and et al.. Breaking of Water-in-Crude Oil Emulsions. 8. Demulsifier Performance at Optimum Formulation Is Significantly Improved by a Small Aromatic Content of the Oil. Energy & Fuels 2019, 33 (3) , 1928-1936. https://doi.org/10.1021/acs.energyfuels.8b03994
  86. Tang L., Wang T., Xu Y., He X., Yan A., Zhang Zh., Li Y., Chen G. Research and Application Progress of Crude Oil Demulsification Technology. Processes 2024, 12 (10) 2292. https://doi.org/10.3390/pr12102292
  87. Krebs T., Schroën C.G.P.H., Boom R.M. Coalescence kinetics of oil-in-water emulsions studied with microfluidics. Fuel, 2013, Vol. 106, P. 327-334 doi: 10.1016/j.fuel.2012.10.067
  88. Zolfaghari R. et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology. 2016. Vol. 170, P. 377-407 doi: 10.1016/j.seppur.2016.06.026

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) mukambetkaliyeva A., Bisengaliev M., Ikhsanov K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies